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Abstract. – OBJECTIVE: Dysregulated lip-
id metabolism has been reported in the pro-
gression of hepatocellular carcinoma (HCC). In 
the present study, we investigated the molec-
ular characteristics of lipid-metabolism-related 
genes (IMRGs) as prognostic markers for HCC. 

MATERIALS AND METHODS: Multi-dimen-
sional bioinformatics analyses were performed 
to comprehensively analyze IMRGs, and to con-
struct prognostic prediction signatures. 

RESULTS: Data of 770 HCC patients and their 
corresponding 776 IMRGs were downloaded 
from three databases. Patients were classified 
into 2 molecular clusters that were associat-
ed with overall survival, clinical characteristics, 
and immune cells. The biological functions of 
the IMRGs differentially expressed between the 
2 clusters were associated with tumor-related 
metabolic pathways. A 6 IMRG signature (6-IS), 
consisting of FMO3, SLC11A1, RNF10, KCNH2, 
ME1, and ZIC2, was established as an inde-
pendent prognostic factor for HCC. The perfor-
mance of the signature of 6-IS prognostic was 
verified in a validation set and compared to an 
external data set. It was revealed that the 6-IS 
could effectively predict the prognosis of pa-
tients with HCC. 

CONCLUSIONS: This study provides new in-
sights into the role of IMRGs in the pathogene-
sis of HCC, and presents a novel signature (6-IS) 
to predict the prognosis of HCC.

Key Words:
Lipid metabolism, Gene, Prognosis, Hepatocellular 

carcinoma, Bioinformatics analysis.

Introduction

Hepatocellular carcinoma (HCC) is a common 
malignant tumor that is characterized by high 
metastatic potential and poor prognosis1. Most 
HCC diagnoses are made when the disease is in 
the advanced stages. In these stages, patients do 
not effectively benefit from surgery or chemora-
diotherapy2. Recently, therapies based on biologi-
cal targets have been proposed for HCC patients3. 
However, the clinical benefits of the available 
biomarkers for early diagnosis and prognostic as-
sessment of HCC remain limited. Therefore, it is 
important to study the pathogenesis of HCC and 
identify specific targets that can be used to im-
prove both diagnosis and prognostic predictions. 

Many metabolic functions in humans occur 
in liver cells4. As a consequence of an im-
portant site for lipid metabolism, HCC results 
in many lipid metabolic abnormalities5, such 
as increased de novo synthesis of fatty acids, 
suppressed oxidation levels, high secretion of 
insulin and insulin-like growth factors, and 
abnormal metabolism of phosphatidylcholine6. 
These metabolic processes provide interme-
diate energy substrates that enable HCC cells 
to grow, proliferate, and metastasize7. In addi-
tion, several enzymes and signaling molecules, 
such as 3-hydroxy-3-methylglutaryl-coenzyme 
A reductase, and the AKT/mTORC1 pathway 
regulate lipid metabolism in HCC cells. These 
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metabolic enzymes and pathways can be used 
as biomarkers for the diagnosis and treatment 
of HCC8. 

Studies have determined biological phenotypes 
and molecular classifications of HCC on the basis 
of lipid metabolic patterns9. For example, the de 
novo fatty acid synthesis phenotype in tumor 
cells has been associated with the upregulation 
of lipid-related genes at multiple levels, e.g., at 
transcription, translation, post-translational mod-
ification, and enzyme activity, as well as the 
influence of these genes on oncogenes 10. The 
molecular classification of HCC based on lipid 
metabolism-related genes revealed distinct tumor 
subtypes. By utilizing bioinformatics, Bidkhori et 
al11 grouped patients with HCC into three clusters 
with distinct metabolic and signaling pathways at 
the genomic, transcriptomic, and proteomic lev-
els. These clusters were associated with clinical 
features and survival rates. However, lipid meta-
bolic pathways and molecules have not been fully 
exploited for the prognostic prediction of HCC.

In this study, data of 770 HCC patients were 
grouped into two molecular clusters based on 776 
IMRGs. The two molecular clusters were associ-
ated with clinical features, immune infiltration, 
and tumor metabolism-related biological process-
es. We also established a prognostic signature 
for the HCC patients. A flow chart showing 
the protocol used in this study is shown in 
Supple-mentary Figure 1. This study 
elucidated the molecular bases of lipid 
metabolism involved in the pathogenesis of 
HCC and highlights the lipid metabolism-related 
genes that could be utilized as prognostic 
markers for HCC. 

Materials and Methods

Patient Characteristics and Genome 
Expression Datasets

Multiple datasets were obtained from several 
databases, including The Cancer Genome Atlas 
(TCGA), Gene Expression Omnibus (GEO), 
and the Database of Hepatocellular Carcinoma 
Ex-pression Atlas (HCCDB). A total of 371 
samples obtained from TCGA were subjected 
to quality control and filtering processes. The 
342 sam-ples that met these conditions were 
randomly distributed into training and 
validation sets. To avoid random allocation 
bias that could affect the stability of 
subsequent modeling, sampling was performed 
100 times in advance to ensure that the 
training and validation sets exhibited 

consistent clinical features. The GSE15654 data-
set was obtained from the GEO database. It was 
pre-processed for quality control and filtering, 
after which a total of 216 samples met the set 
conditions. The HCCDB18 dataset containing 
212 samples and their corresponding clinical in-
formation was directly downloaded from the HC-
CDB database. Detailed information on the three 
datasets is presented in Supplementary Table I. 

Molecular Classification of HCC Based 
on Lipid Metabolism-Related Genes

IMRGs were obtained from 6 lipid metab-
olism-related pathways (Supplementary Table 
II) from the Molecular Signature Database v7.0 
(www.gsea-msigdb.org/gsea/msigdb). A total of 
776 IMRGs were retained after the exclusion 
of overlapping genes. These 776 IMRGs were 
then extracted from the TCGA expression pro-
file data, retaining only those genes with an 
expression value >0 in more than half of the sam-
ples. The 739 IMRGs that remained were used 
for subsequent analysis. The coxph R package 
was used to perform univariate Cox analysis on 
739 IMRGs to extract HCC-related IMRGs. The 
HCC-related IMRGs were then processed us-
ing the non-negative matrix factorization (NMF) 
clustering algorithm of the NMF R package. The 
NMF analysis and 50 iterations were performed 
with the standard “brunet” pattern12. k values, 
indicating the optimal number of clusters, ranged 
from 2 to 10. The average contour width of the 
common member matrix was determined using 
the NMF R package, with the minimum member 
of each subclass set at 10. The optimal k value 
was determined from the indicators of “cophe-
netic”, residual sum of squares (RSS), and silhou-
ette. Differences in clinical features between the 
clusters separated by HCC-related IMRGs were 
compared using the Chi-square test. The Tumor 
Immune Estimation Resource (TIMER) (https://
cistrome.shinyapps.io/timer/) algorithm was used 
to investigate associations between clusters and 
immune scores.

Construction of a Prognostic Signature 
Based on IMRGs

Using the DESeq2 algorithm from the limma R 
package, differential expression of HCC-related 
IMRGs between clusters was analyzed. IMRGs 
with a false discovery rate <0.05 and an absolute 
value of log2 fold change >1 were considered 
significant. Using the survival R package coxph 
function, HCC-related IMRGs with significantly 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-10189.pdf
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different expressions were subjected to univariate 
Cox analysis to determine their association with 
the survival of HCC. The log rank p<0.01 was set 
as the threshold. To narrow the gene range and 
build a prognostic model with high accuracy, the 
LASSO method was used to reduce the dimen-
sionality and select the HCC-related IMRGs with 
the most significant differences in expression. 
The 10-fold cross validation methods were used 
to select the optimal values of the penalty param-
eter lambda13. Multivariate Cox analysis was then 
performed on the genes obtained in the preceding 
steps. The lowest value of the Akaike informa-
tion criterion (AIC) within the Cox proportional 
regression model was calculated to retain the 
most significant genes with which to construct an 
IMRG signature. A risk score based on the IMRG 
signature set was calculated as follows: risk score 
= expression gene 1 × βgene 1 + expression gene 
2 × βgene 2 + • • • + expression gene x × βgene x, 
where x was the number of IMRGs, and β was the 
coefficient value for each IMRG. The risk score 
was normalized to a z-score using the binormal-
ization process algorithm. Samples with z-score 
values >0 and <0 were classified into high- and 
low-risk groups, respectively. 

Statistical Analysis
The pheatmap R package was used to display 

the unsupervised hierarchical clustering heatmap 
of HCC-related IMRGs, while a volcano plot of 
the IMRGs differentially expressed between clus-
ters was developed using the ggplot2 R package. 
Overall survival (OS) was estimated using the 
Kaplan-Meier (KM) method. The sensitivity and 
specificity of the survival curve were assessed 
using the receiver operating characteristic (ROC) 
curve by calculating the area under the curve 
(AUC) using the pROC R package. The gene 
ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses were performed 
for the differentially expressed IMRGs using 
the clusterProfiler R package. The independent 
t-test and Mann-Whitney U test were performed 
to compare variables between groups (variables 
following normal and non-normal distributions, 
respectively). Associations between the IMRG 
signature and clinical features were analyzed 
by univariate and multivariate survival analyses. 
The associations between the IMRG signature 
and immune/stromal scores were determined by 
calculating the immune and stromal scores of 
each sample using the estimate R package and 
comparing high- and low-risk groups. The po-

tential IMRG signature mechanisms were ana-
lyzed by Gene Set Enrichment Analysis (GSEA) 
using the GSVA R package. Pearson correlation 
coefficients were used to analyze the associa-
tions between the IMRG signature and biological 
functions. The prognostic value of the IMRG 
signature and other signatures were assessed us-
ing Harrell’s concordance index (c-index) using 
the rms R package. The restricted mean survival 
time (RMST) is an index of the area under the 
KM curve at a specific time point. It was used to 
assess the predictive value of the IMRG signature 
at different time points. All statistical analyses 
were performed using SPSS v25.0 and R software 
version 3.4.0 (IBM Corp., Armonk, NY, USA). 
p≤0.05 was considered statistically significant.

Results

Identification of Molecular Subtypes 
Based on IMRGs

Univariate Cox analysis was performed on 739 
pre-processed IMRGs obtained from the TCGA 
dataset. A total of 324 HCC-related IMRGs were 
identified and used for HCC classification. The 
cophenetic coefficients, which indicate the stabil-
ity of the classified cluster, were used to calculate 
the optimal k value. A comprehensive analysis was 
performed on the cophenetic, RSS, and silhouette 
indices. From this analysis, k=2 was selected as 
the optimal value. Consequently, 2 molecular sub-
types (cluster 1 and cluster 2) were identified based 
on the IMRGs (Supplementary Figure 2). The 
matrix heat map exhibited clear boundaries based 
on the k value of 2, suggesting that the molecular 
subtype classification was stable (Figure 1A). The 
gene cluster heatmap of the 324 HCC-related IM-
RGs revealed marked differences between cluster 
1 (C1) and cluster 2 (C2). The expression levels 
of HCC-related IMRGs in C2 were significantly 
higher than those in C1. In addition, there was a 
significant difference in the distribution of clinical 
features between C1 and C2 (Figure 1B). KM anal-
ysis revealed that C2 had a significantly shorter OS 
compared to C1 (p=0.0099) (Figure 1C). The accu-
racy of the molecular subtype classification based 
on the IMRGs was determined by comparing the 
associations between the 2 clusters and clinical 
features using the Chi-squared test. The patholog-
ical classifications of tumor (T) (p=0.0002), stage 
(p=0.0478), and grade (p=0.0391) were signifi-
cantly different between the 2 clusters (Supple-
mentary Table III). Immune score comparisons 
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between the 2 clusters were performed using the 
TIMER algorithm. Except for CD8 cells, the im-
mune scores of B cells (p=0.045), CD4 T cells 
(p=0.015), neutrophils (p<0.001), macrophages 
(p=0.001), and dendritic cells (p=0.001) were all 
significantly higher in cluster 2 than those in in 
cluster 1 (Figure 1D). These results revealed that 
the IMRG signature could classify HCC into dis-
tinct molecular subtypes and was associated with 
clinical characteristics.

Construction and Validation of an 
IMRG Signature

We first screened the IMRGs between clusters 
1 and 2 and identified that a total of 400 IMRGs 
were significantly differentially expressed. Volca-
no and clustering maps revealed a distinct distri-
bution of upregulated and downregulated IMRGs 
between the 2 clusters (Supplementary Figure 
3A, B). GO analysis indicated that the differen-
tially expressed IMRGs were primarily enriched 
in metabolic processes, such as glutamate and 
lactate metabolism, as well as in tumorigene-
sis-related processes such as cell-cell adhesion 
and cellular migration (Supplementary Figure 
3C). In the KEGG analysis, IMRGs were pre-
dominantly enriched in metabolic pathways, such 
as glucagon signaling, metabolism of xenobiot-
ics by cytochrome P450, and retinol metabolism 
(Supplementary Figure 3D). Functionally, the 
differentially expressed IMRGs were involved in 
tumorigenesis and metabolism-related pathways.

Univariate Cox regression and LASSO (Figure 
2A, B) analyses were performed to select suitable 
genes from the 400 differentially expressed IM-
RGs; 20 significant genes were revealed by these 
two analyses. These were further subjected to 
a multivariate Cox regression analysis with the 
mimic AIC value = 466.72. Finally, we construct-
ed the 6-IS (Supplementary Table IV) using the 
risk score formula. The associations between the 
6 IMRGs and HCC survival were also evaluat-
ed. Unlike FMO3, which correlated with a good 
prognosis in high-risk groups, SLC11A1, RNF10, 
KCNH2, ME1, and ZIC2 correlated with shorter 
survival times in the high-risk group compared 
to those in the low-risk group (Figure 2C). More-
over, the 6-IS predicted significant differences in 
survival outcomes between C1 and C2. We then 
analyzed the expression profiles of the 6 IMRGs 
in the two clusters. Except for FMO3, the expres-
sion levels of other 5 IMRGs were all significant-
ly higher in C2 than those in C1 (Figure 2D). 
Therefore, SLC11A1, RNF10, KCNH2, ME1, and 
ZIC2 were considered hazard indices, and FMO3 
the protective index, for the construction of an 
independent prognostic IMRG signature. 

According to the risk score calculations of 
the 6-IS in each sample, we depicted the risk 
score plot, survival status, and expression pro-
files of the 6 IMRGs in patients from the train-
ing set. We found that patients with HCC with 
high-risk scores exhibited higher mortality rates 
when compared to those with low-risk scores. 

Figure 1. Classification of HCC based on IMRGs. A, Consensus map of NMF algorithm results for HCC patients, using k=2. 
B, Cluster heatmap of 324 prognosis-related IMRGs in the 2 HCC clusters. C, KM analysis of overall survival in the 2 HCC 
clusters. D, TIMER analysis of immune scores in the 2 clusters. 
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Changes in the expression of the 6 IMRGs with 
increased risk scores revealed that SLC11A1, 
RNF10, KCNH2, ME1, and ZIC2 were the haz-
ard indices, while FMO3 was the protective 
index (Figure 3A). In the ROC analysis, the 
AUC for the 6-IS was 0.80, 0.82, and 0.84 for 
1, 3, and 5 years, respectively, indicating a high 
prognostic prediction accuracy for the 6-IS (Fig-
ure 3B). In the training cohort, patients were 
divided into high- and low-risk groups. KM 
analysis based on 6-IS showed that the OS of 
the low-risk group was significantly higher than 
that of the high-risk group (Figure 3C). These 
results showed that the 6-IS could serve as an 
independent signature predicting the survival 
outcomes of patients with HCC in the valida-

tion (Supplementary Figure 4A), GSE15654 
(Supplementary Figure 4B), and HCCDB18 
sets (Supplementary Figure 4C). These findings 
show that the 6-IS could effectively predict the 
prognosis of patients with HCC.

Association of the 6-IS With Clinical 
Features and Molecular Characteristics 
of HCC

KM analysis showed that clinical features, 
including alpha-fetoprotein (AFP) (p= 0.02871), 
stage (p=3e−05), T (p=2e−05), N (lymph node) 
(p=0.02519), and M (metastasis) (p=0.00223) 
could be used to group the patients with HCC in 
the training set based on OS analysis (Supple-
mentary Figure 5). We then predicted the OS 

Figure 2. Selection of IMRGs for construction of a prognostic signature. A, LASSO analysis of IMRG coefficient profiles 
and the trajectory distribution of each independent IMRG. B, The confidence intervals under each lambda using 10-fold cross 
validation. C, KM analysis of the overall survival of HCC patients based on each of the 6 signature IMRGs. D, The expression 
of 6 IMRGs in the 2 clusters.



Lipid metabolism-related genes of HCC

121

of patients with HCC using the 6-IS according 
to the above clinical features (AFP >20, AFP 
≤20, T, N, M, Stage I+II, and Stage III+IV). It 
was found that the 6-IS could distinguish the 
low-risk group from the high-risk group. It was 
also revealed that patients with HCC in the high-
risk group exhibited significantly shorter survival 
times than those in the low-risk group (Figure 4). 
Univariate and multivariate Cox analyses were 
performed to verify the prognostic value of 6-IS 
in patients with HCC from TCGA and HCCDB18 
databases. It was concluded that 6-IS is an inde-
pendent prognostic marker associated with sur-
vival when treated as a continuous variable in 
both TCGA (p=2.97E-09 and p=0.0049) and 

HCCDB18 (p=0.032 and p=0.0453) sets (Table 
I). We then calculated the immune, stromal, and 
estimate scores for each sample from TCGA. 
Both immune and estimate scores were signifi-
cantly higher in the high-risk group than those 
in the low-risk group (Supplementary Figure 
6A). Similar results were obtained for the HC-
CDB18 dataset (Supplementary Figure 6B). Us-
ing GSEA analysis, we compared the expression 
of IMRGs in samples from TCGA, HCCDB18, 
and GSE15654 sets. A single sample Gene Set 
Enrichment Analysis (ssGSEA) value was ob-
tained and used to infer the associations between 
the 6-IS risk score and biological functions. Most 
of the biological functions, such as glyoxylate and 

Figure 3. Prognostic prediction by 6-IS in the training set. A, Distributions of the risk scores, survival status, and expression 
of the 6 IMRGs, in patients with HCC. B, ROC curve analysis of the 6-IS for 1, 3, and 5 years. (C) KM analysis of overall 
survival of patients with HCC, based on 6-IS.
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Figure 4. KM analysis of overall survival of HCC patients based on 6-IS, when patients were classified by clinical features 
(including AFP, TNM, and stage).

Table I. Univariate and multivariable Cox analyses to identify prognostic-related clinical factors.

    Univariate analysis   Multivariable analysis

 Variables HR 95% CI of HR p-value HR 95% CI of HR p-value

Entire TCGA cohort
Risk score (High/Low) 3.025 2.099-4.361 2.97E-09 1.997  1.234-3.233 0.0049 
Age 1.008 0.994-1.022 0.231 1.021  1.001-1.041 0.0434 
Gender (Male/Female) 0.8 0.556-1.150 0.229 0.881  0.542-1.43 0.6072 
AFP 1.748 1.105-2.765 0.017 2.455  1.392-4.333 0.0019 
T3/T4 vs. T1/T2 2.838 1.981-4.067 1.32E-08 1.285  0.775-2.13 0.3318 
N1/N2 vs. N0 1.617 1.112-2.349 0.012 1.030  0.554-1.916 0.9248 
M1/MX vs. M0 1.795 1.235-2.608 0.002 2.972  1.611-5.482 0.0005 
Stage III/IV vs. Stage I/II 2.767 1.893-4.046 1.51E-07 0.851  0.585-1.239 0.4010 
G3/G4 vs. G1/G2 1.069 0.736-1.553 0.724 1.737  1.054-2.864 0.0304 
ICGA cohort
Risk score (High/Low) 2.088 1.066-4.089 0.032 1.955  0.989-3.859 0.0453 
Age 1.015 0.979-1.052 0.406 1.004  0.968-1.041 0.8422 
Gender (Male/Female) 0.516 0.256-1.039 0.064 0.360  0.166-0.782 0.0098 
Stage III/IV vs. Stage I/II 2.737 1.415-5.295 0.0028 3.462  1.711-7.003 0.0006 
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dicarboxylate metabolism, drug metabolism by 
cytochrome p450, and beta-alanine metabolism, 
were negatively associated with 6-IS risk scores. 
In contrast, biological functions associated with 
tumorigenesis, including glycerophospholipid 
metabolism, fatty acid metabolism, cell cycle, 
and RNA degradation were positively correlated 
with 6-IS risk scores (Supplementary Figure 
7A). The clustering heatmap based on ssGSEA 
values revealed the biological pathways positively 
or negatively correlated with the 6-IS risk scores 
(Supplementary Figure 7B).

 
Comparison of 6-IS With 
External Models

A six gene signature14, an eight gene signa-
ture15, a six gene-based prognostic signature16, 
and a four gene signature17, were used as the 
external data set for validation. These signatures 
were established to calculate the risk score and 

assess the OS of patients in TCGA using meth-
ods similar to those in our study. In line with 
6-IS, KM analysis showed that all four models 
could assign patients with HCC into high- and 
low-risk groups. The high-risk groups exhibited 
significantly shorter survival times compared to 
low-risk groups (Figure 5A-D). However, except 
for the eight gene signature (0.813), which showed 
similar results to our study, ROC analysis re-
vealed that the average AUC values at 1, 3, and 
5 years from the six gene signature (0.613), six 
gene-based prognostic signature (0.770), and four 
gene signature (0.686) were low compared to 6-IS 
(0.82) (Figure 5A-D). In c-index analysis, 6-IS 
exhibited a better prognostic ability than the oth-
er four models (Figure 5E). RMST analysis also 
found that 6-IS performed better than the other 
four models in the prognostic prediction of HCC 
patients (Figure 5F). These results show 6-IS as a 
robust prognostic prediction signature. 

Figure 5. Comparison between 6-IS and external models. ROC curve analysis of the 6-IS for 1, 3, and 5 years, and KM 
analysis of overall survival in HCC patients according to the (A) six gene signature, (B) eight gene signature, (C) six gene-
based prognostic signature, and (D) four gene signature. E, C-index analysis of 6-IS and four other external models. F, The 
RMST analysis of 6-IS and four other external models.
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Discussion

Tumorigenesis is accompanied by metabolic 
reprogramming of various nutrients that sustain 
cancer cell survival, and regulate gene expres-
sion, emergence of mutations, and tumor immune 
microenvironment18. A classic example of tumor 
metabolic reprogramming is the “Warburg ef-
fect”, in which cancer cells use glycolysis to re-
place normal cells that depend on aerobic metab-
olism for survival19. Abnormalities in glucose and 
lipid metabolisms in tumors have been the focus 
of recent studies20. To date, genes associated with 
lipid metabolism have not been fully explored 
and their functions in the pathogenesis, diagno-
sis, and treatment of HCC remain to be deter-
mined. In this study, we used multi-dimensional 
bioinformatic methods to screen abnormally reg-
ulated genes associated with lipid metabolism in 
HCC. These genes were then used to construct a 
prognostic prediction signature. 

Dysregulation of genes associated with lipid 
metabolism has been implicated in HCC tu-
morigenesis. In particular, alcohol dehydroge-
nase 1A triggers oncogenic transformation of 
hepatocytes, leading to poor survival21, whereas 
extracellular pigment epithelium-derived factor 
inhibits angiogenesis in HCC by inducing lipid 
metabolic disorders22. These insights into the mo-
lecular mechanisms and gene markers involved 
in the pathogenesis of HCC have enhanced our 
understanding of its metabolic profile. Howev-
er, achieving clinical benefits from single-gene 
targets in HCC is challenging. In this study, we 
determined the relationships between lipid me-
tabolism-related genes and clinical features of 
HCC. A prognostic signature (6-IS) with good 
predictive results was constructed. This prog-
nostic signature was also associated with overall 
survival, clinical features, and metabolic signal-
ing pathways in patients with HCC. The 6-IS 
comprised six genes (FMO3, SLC11A1, RNF10, 
KCNH2, ME1, and ZIC2) obtained using multidi-
mensional algorithms. This signature was shown 
to overcome single-gene shortcomings, such as 
interference from other factors. We found that 
FMO3 suppresses tumor progression by decreas-
ing cellular viability; therefore, it is a protective 
index. This finding was in concordance with a 
previous study23. It was also revealed that ME1 or 
ZIC2, which exhibit stem-cell features, were cor-
related with poor prognosis, and therefore, risk 
indices24,25. It has been reported the presence of 
potential errors and biases in their analyses. For 

this reason, a statistical signature with multiple 
genes comprising clinical information to improve 
the efficiency of prognostic prediction was con-
structed. In terms of prognostic prediction, the 
6-IS performed better than other models from 
external datasets. Further studies are needed to 
validate the performance of 6-IS in a prospective 
cohort. 

Immune estimation tools, such as TIMER and 
ESTIMATE, were used to calculate immune 
scores to assess the immune infiltration of cells 
across groups. We found that HCC was charac-
terized by heavy infiltration of immune cells, and 
that the inflammatory responses in the liver are 
the main mechanisms contributing to hepatitis, 
cirrhosis, and HCC. This finding was in concor-
dance with previous findings26. Unlike studies 
that used the global transcriptome of HCC to 
analyze immune cell composition and perform 
molecular classification, we only used IMRGs to 
determine immune scores and perform metabolic 
stratification. A strong link between metabolism 
and immunity has been demonstrated during 
tumorigenesis27. Our study revealed that IMRGs 
associated with the regulation of immune cells 
during the pathogenesis of HCC. Metabolic and 
epigenetic pathways are important in regulating 
tumor immunity. Most epigenetic reprogram-
ming genes are associated with fatty acid, cho-
lesterol esters, and phosphatidylcholine metabo-
lisms28. KEGG and GO analyses showed that the 
IMRGs differentially expressed between clusters 
were enriched in diverse metabolic pathways. 
Moreover, GSEA analysis revealed that upregu-
lated or downregulated IMRGs used to construct 
6-IS were associated with metabolic pathways. 
We hypothesized that the IMRGs were involved 
in several metabolic pathways that modulate the 
functions and phenotypes of immune cells during 
the pathogenesis of HCC. 

Clinical features, such as AFP, TNM, tumor 
stage and grade, and other pathological classifi-
cations are considered in the clinical management 
of HCC29. However, these data are biased and lack 
specificity. There is a need to identify accurate 
indicators and phenotypes to improve existing 
diagnostic and therapeutic guidelines30. In this 
study, the OS was predicted based on AFP, stage, 
and TNM indicators. The performance of 6-IS 
was then compared with the above clinical fea-
tures. The results showed that compared to other 
clinical features, 6-IS was superior in predicting 
HCC prognosis. In addition, 6-IS was also found 
to be an independent prognostic factor. Given that 



Lipid metabolism-related genes of HCC

125

6-IS is yet to be verified in prospective cohort 
studies, we suggest that it can be combined with 
traditional clinical features to improve the clini-
cal management of HCC.

Conclusions

Summarily, we present an IMRG-based signa-
ture to classify patients with HCC into molecular 
clusters based on metabolic profiles. The 6-IS 
was found to be a robust prognostic prediction 
marker for HCC. This signature was associated 
with clinical features, immune cells, and various 
functions. This study provides novel insights into 
the prognostic value of lipid metabolism in HCC.
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